attempted to inhibit the action of PAF with a variety of PAF-R antagonists. Although septic animal models exhibit beneficial effects as a result of PAF antagonist treatment, clinical studies on patients with sepsis do not display similar outcome. Because the dose of PAF-R antagonists which inhibit endotoxin-induced sepsis are typically more than 10-fold higher than those for PAF released during sepsis, it is suggests that protective effect of PAF antagonist may be related in non-specific inhibition. Study using PAF-R deficient mice further verified these points. Ishii S et al observed no significant differences in lethality and production of inflammatory cytokines during endotoxic shock between wild-type and PAF-R-deficient mice, implying that PAF is not essential for endotoxic shock development. Recently, Walterscheid et al provided evidence for a novel immunoreglatory role for PAF, which, in addition to being a sensor for cellular damage, can activate immune suppressive mechanisms. Our KIN1408 present findings further 3-Methyladenine support this hypothesis, suggesting that the beneficial effect of exogenous PAF occurred primarily by interference with the cascade of events ultimately leading to the onset of severe endotoxin shock. Sepsis is just one example of a pathologic condition associated with a cytokine storm, the excessive and sustained production of numerous cytokines by immune cells. Much evidence derived from studies in animal and in human systems show that highly elevated levels of proinflammatory cytokines contribute to high mortality by septic shock. Our results demonstrate that, in addition to protecting against endotoxin-mediated high mortality, PAF induces remarkable changes in the production level of cytokines in response to LPS. In particular, two distinct patterns were observed. First, in LPS-induced endotoxemic mice, PAF administration resulted in prominent decrease in the production of circulating proinflammatory cytokines, including TNF-a, IL-1b, IL-12p70, and IFN-c. Second, PAF administration significantly increased production of the compensatory anti-inflammatory cytokine IL-10. Because anti-inflammatory cytokines are released as a regulatory mechanism in
Calcimimetic agent
Just another WordPress site